
BE/Bi 101: Order-of-Magnitude Biology
Homework 5

Due date: Friday, February 13, 2015

“Problems worthy of attack prove their worth by hitting back.”

—Piet Hein

1. Snapshot—evolution by the numbers.
Cell Magazine has a short format (2 page) article known as “Snapshot” that gives a brief
description of important areas of cell biology. One of us (RP) wrote such an article called “Key
Numbers in Biology” that attempts to pull together 25 key numbers that any cell biologist
needs to know. Read that article (which you can download here) to get a sense of how these
features are structured. Now that you have seen an example, it is your turn to partially imagine
how to construct such a Snapshot feature yourself. Specifically, your job is to help us write a
Snapshot feature entitled “Evolution by the Numbers.” First, make a list of five key headings
for your numbers. To give you a sense of what we mean in the context of cell biology one could
have “Length Scales,” “Time Scales,” “Concentrations,” etc. Figure out what five categories
you think would be most important for characterizing key numbers in evolutionary biology.
Second, choose five key numbers that fall within any of these categories and try to give an
impression of an order-of-magnitude estimate for your number and justification for why it is
important. Please submit your answer to Rob, Justin, David and Pradeep in PDF form by
email.

2. Population genetics and selection.
In class we talked about how allele frequencies change over time in the presence of selection. In
this problem, you will flesh out the details of this interesting topic which was only considered
in a cursory fashion in class.

a) Before considering the case of selection, we must first review the allele frequencies gener-
ation by generation for an effectively infinite population. Basically, this means we must
remind ourselves of the key tenets of the Hardy-Weinberg model. As was done in class,
imagine an urn that in generation M contains NA copies of the allele A resulting in
a frequency p = NA/2N . Hence, there are 2N − NA copies of allele a. What is the
frequency of these alleles in the population? Now imagine an experiment in which to
construct generation M + 1 we draw N pairs (!!) of alleles with replacement in order to
obtain the contents of our new urn for generation M + 1. The concept of our experiment
is intended to mimic the randomness of mating in actual biological populations. Given
the way we have set up the urn drawing, what is the expected frequency of AA pairs?
What is the frequency of Aa pairs? What is the frequency of aa pairs? Now, using the
formula we derived in class that tells us how to obtain allele frequencies from genotype
frequencies, find an expression for the allele frequencies in generation M + 1 given the
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genotype frequencies. Specifically, demonstrate that

p′ = p2 +
1

2
2pq, (1)

where p′ is the frequency of the A allele in generation M + 1 and p is its frequency in
generation M and use this to demonstrate that allele frequencies are invariant under this
simple model of mating. Do the same thing for q′. This jibes with what was claimed in
class, namely, that Hardy-Weinberg is akin to Newton’s first law of motion for the genetics
of evolution—in the absence of any driving force, allele frequencies stay the same.

b) Now we are going derive the change in the frequencies ∆p and ∆q where we amend the
procedure introduced in part (a) to include selection. Basically, we now imagine a two-
step mating process in which after we draw a given allele pair (i.e. a genotype) we then
decide if that genotype survives by keeping that allele pair with weight wij. Specifically,
we keep AA pairs with weight w11, we keep Aa pairs with weight w12 and we keep aa
pairs with weight w22. In class, we introduced the idea of the mean fitness as

w̄ = p2w11 + 2pqw12 + q2w22. (2)

This then allows us to ascribe genotype frequencies for generation M + 1 as xAA =
p2w11/w̄, xAa = 2pqw12/w̄ and xaa = q2w22/w̄, guaranteeing that the population size
remains the same in each generation. Use all of these definitions and ideas to show that
the change of allele frequency for A is given by

∆p = p′ − p =
p

w̄
a1 (3)

where

a1 = p(w11 − w̄) + q(w12 − w̄) (4)

is the average excess of fitness. Essentially, provide a clear derivation of the way in which
allele frequencies change from one generation to the next in the case where selection is in
effect. Find both ∆p and ∆q. Given those results for ∆p and ∆q, should we expect that
∆p + ∆q = 0 and if so, are your results for the changes in allele frequencies consistent
with that constraint? To demonstrate this, you need to actually calculate ∆p+ ∆q.

c) As a toy model for how allele frequencies associated with the sickle cell trait change
assume that the fitnesses are wAA = 0.9, wAS = 1.0 and wSS = 0.2, where we use A for
the wild-type allele and S for the allele associated with sickle-cell. Imagine that the S
allele begins with a very low frequency, q. First, give an intuitive argument for what you
expect the sign of ∆p and ∆q to be in the next generation of reproduction. Then, by
assuming that q = 0.001, find ∆p and ∆q by using the formulae you derived in the first
part of the problem. Make sure you identify the mean fitness and the average excess of
fitness. Do ∆p and ∆q have the signs you expect intuitively? Given this result, explain
what will happen over time to the allele frequencies.
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3. Mutation-selection balance.
We can continue to build on these same simple one-locus, two-allele models to examine com-
binations of different “forces of evolution”. Specifically, here we think about the way in which
mutation and selection compete to determine allele frequencies. In this problem we are going
to work out the mathematics of this effect explicitly. Our strategy is similar in spirit to what
we did in class where we introduced the idea of an urn from which we draw our alleles A1 and
A2. We imagine that the allele A1 is mutated into A2 with probability µ each generation and
that the rate of mutation of A2 back to A1 is negligibly small. This scenario could be realized if
we think of A2 really as the set of all the ways that the gene allele A1 can be broken. There are
thus many ways to break our allele but only one way that mutation can restore it and hence
this rate is assumed small.

For the simple case in which there are only two possible alleles, we consider the process in
two steps. To be concrete, consider the case in which the fitnesses are w11 = 1, w12 = 1 and
w22 = 1 − s. First, show that we have

pafter selection =
p

1 − q2s
. (5)

This essentially is a special case of what you did in the previous problem. We already worked
this out in class, so your job is simply to recapitulate that discussion and to explain all of the
steps leading up to that equation, both mathematically and conceptually. Now we need to
impose the results of mutation. Impose the mutation by computing

p′ = pafter mutation/selection = (1 − µ)
p

1 − q2s
. (6)

Explain what this equation means and how it captures the amendment of the allele frequency
p due to mutation. For the case when mutation and selection exactly balance, we have p′ = p.
This implies that we have

p = (1 − µ)
p

1 − q2s
. (7)

Show that this steady state condition implies that

q =

√
µ

s
. (8)

Examine your result qualitatively and provide an argument as to how increasing either mu-
tation rate or selection coefficient will alter allele frequencies. Does this equation make sense
intuitively? Why is this result referred to as “mutation-selection balance”.
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